Math Lab: Investigating End Behavior in Polynomials

Question: What can the degree and leading coefficient of a polynomial tell you about its graph?
Use a graphing calculator to make a rough sketch of each polynomial. For each, give the degree and sign of the leading coefficient.

$y=x^{2}-3 x-1$	$y=x^{4}-4 x^{2}+2$	$y=x^{6}-4 x^{4}+2 x^{2}+6$
Degree: Sign of LC:	Degree: Sign of LC:	Degree: Sign of LC:
$y=2 x-3$	$y=x^{3}-2 x+2$	$y=x^{5}-3 x^{3}+2 x-1$
Degree: Sign of LC:	Degree: Sign of LC:	Degree: Sign of LC:

1. Describe the end behavior of the graph of a polynomial with an EVEN DEGREE and POSITIVE LEADING COEFFICIENT.

As x approaches negative infinity, y \qquad .

As x approaches positive infinity, y \qquad .
2. Describe the end behavior of the graph of a polynomial with an ODD DEGREE and POSITIVE LEADING COEFFICIENT.

As x approaches negative infinity, y \qquad .

As x approaches positive infinity, y \qquad .

Use a graphing calculator to make a rough sketch of each polynomial.

3. Describe the end behavior of the graph of a polynomial with an EVEN DEGREE and NEGATIVE LEADING COEFFICIENT.

As x approaches negative infinity, y \qquad .

As x approaches positive infinity, y \qquad .
4. Describe the end behavior of the graph of a polynomial with an ODD DEGREE and NEGATIVE LEADING COEFFICIENT.

As x approaches negative infinity, y \qquad -

As x approaches positive infinity, y \qquad .

